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Abstract: Inspired by the possibility that generative models based on quantum circuits can provide a

useful inductive bias for sequence modeling tasks, we propose an efficient training algorithm for a

subset of classically simulable quantum circuit models. The gradient-free algorithm, presented as a

sequence of exactly solvable effective models, is a modification of the density matrix renormalization

group procedure adapted for learning a probability distribution. The conclusion that circuit-based

models offer a useful inductive bias for classical datasets is supported by experimental results on the

parity learning problem.
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1. Introduction

The possibility of exponential speedups for certain linear algebra operations has inspired a wave

of research into quantum algorithms for machine learning purposes [1]. Many of these exponential

speedups hinge on assumptions of fault tolerant quantum devices and efficient data preparation,

which are unlikely to be realized in the near future. Focus has thus shifted to hybrid quantum-classical

algorithms which involve optimizing the parameters of a variational quantum circuit to prepare a

desired quantum state and have the potential to be implemented on near-term intermediate scale

quantum devices [2].

Hybrid quantum-classical algorithms have been found to solve difficult eigenvalue problems [3]

and to perform hard combinatorial optimization [4]. A number of recent works consider unsupervised

learning within the hybrid quantum-classical framework [5–9].

In the context of machine learning, as emphasized in [2], it is less clear if variational

hybrid quantum-classical algorithms offer advantages over existing purely classical algorithms.

Density estimation, which attempts to learn a probability distribution from training data, has been

suggested as an area to look for advantages [7] because a quantum advantage has been identified in

the ability of quantum circuits to sample from certain probability distributions that are hard to sample

classically [10]. In high-dimensional density estimation relevant to machine learning, expressive power

is only part of the story and indeed algorithms in high-dimensional regime rely crucially on their

inductive bias. Do the highly expressive probability distributions implied by quantum circuits offer

a useful inductive bias for modeling high-dimensional classical data? We address this question in

this paper.

We work within the confines of a classically tractable subset of quantum states modeled by

tensor networks, which may be thought of as those states that can be prepared by shallow quantum

circuits. Even more narrowly, we restrict to matrix product states akin to one-dimensional shallow

circuits. Mathematically, tensor networks are a graphical calculus for describing interrelated matrix

factorizations for which there exist polylogarithmic algorithms for a restricted set of linear algebra

computations. We propose an unsupervised training algorithm for a generative model inspired by the
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density matrix renormalization group (DMRG) procedure. The training dynamics take place on the

unit sphere of a Hilbert space, where in contrast to many variational methods, a state is modified in

a sequence of deterministic steps that do not involve gradients. The efficient access to certain vector

operations afforded by the tensor network ansatz allows us to implement our algorithm in a purely

classical fashion.

We experimentally probe the inductive bias of the model by training on the dataset P20 consisting

of bitstrings of length 20 having an even number of 1 bits. The algorithm rapidly learns the uniform

distribution on P20 to high precision, indicating that the tensor network quantum circuit model

provides a useful inductive bias for this classical dataset and the resulting trained model is small,

only 336 parameters. The P20 dataset can be frustrating to learn for other models, such as restricted

Boltzman machines (RBMs) trained with gradient-based methods. The difficulty of training RBMs to

learn parity with contrastive divergence and related training algorithms is noted in [11]. The difficulty

for other gradient based deep-learning methods on parity problems has been studied in [12]. To put

the work in this paper in context, we note that generative modeling using tensor networks has been

considered for several datasets for which classical neural models trained with gradient based methods

are successful [13,14]. We also note that shallow quantum circuits have already been successful for a

related supervised parity classification problem [15].

In an effort to improve accessibility, we avoid the language of quantum-many body physics and

quantum information and explain the algorithm and results in terms of elementary linear algebra

and statistics. While this means some motivational material is omitted, we believe it sharpens the

exposition. One exception is the visual language of tensor networks where the benefits of simplifying

tensor contractions outweigh the costs of using elementary, but cumbersome, notation. We refer

readers unfamiliar with tensor network notation to [16–19] or to the many other surveys.

The organization of the paper is as follows. In Section 2 we state the optimization problem at the

population level and propose a finite-sample estimator. In Sections 3 and 4 we describe an abstract

discrete-time dynamical system evolving on the unit sphere of Hilbert space which optimizes our

empirical objective by exactly solving an effective problem in a sequence of isometrically embedded

Hilbert subspaces. In Section 5 we provide a concrete realization of this dynamical system for a class

of tensor networks called matrix product states. Section 6 outlines experiments demonstrating that the

proposed iterative solver successfully learns the parity language using limited data.

2. The Problem Formulation

Recall that a unit vector ψ in a finite-dimensional Hilbert space H defines a probability distribution

Pψ on any orthonormal basis by setting the probability of each basis vector e to be

Pψ(e) := |〈ψ, e〉|2. (1)

We refer to the probability distribution Pψ in Equation (1) as the Born distribution induced by ψ.

Let π be a probability distribution on a finite set X and fix a field of scalars, either R or C. Let H

be the free vector space on the set X . Use |x〉 to denote the vector in H corresponding to the element

x ∈ X . The space H has a natural inner product defined by declaring the vectors {|x〉 : x ∈ X} to be

an orthonormal basis.

Define a unit vector ψπ ∈ H by

ψπ := ∑
x∈X

√
π(x) |x〉. (2)

Notice that ψπ realizes π as a Born distribution:

π(x) = Pψπ (|x〉) for all x ∈ X . (3)
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The formula for ψπ as written in Equation (2) involves perfect knowledge of π and unrestricted

access to the Hilbert space H. This paper is concerned with situations when knowledge about π is

limited to a finite number of training examples, and ψ is restricted to some tractable subset M of the

unit sphere.

At the population level, the problem to be solved is to find the closest approximation ψ∗ to ψπ

within M,

ψ∗ := arg min
ψ∈M

‖ψ − ψπ‖ .

We assume access to a sequence (Xi)
n
i=1 of samples drawn independently from π, giving rise to

the associated empirical distribution

π̂(x) :=
1

n

n

∑
i=1

δXi
(x). (4)

It is natural to define the following estimator whose Born distribution coincides with the

empirical distribution

ψπ̂ = ∑
x∈X

√
π̂(x) |x〉. (5)

We are thus led to consider the following optimization problem.

Problem 1. Given a sequence {Xi}
n
i=1 of i.i.d. samples drawn from π and a subset M ⊆ {ψ ∈ H : ‖ψ‖ = 1}

of the unit sphere in H, find

ψ̂ := arg min
ψ∈M

‖ψ − ψπ̂‖ .

Our proposal differs from existing literature on Born Machines which have employed

log-likelihood objective functions minimized by gradient descent (see [20] for a review). As we will

see, the choice of loss function as the l2 norm allows analytical updates with guaranteed improvement.

This should be contrasted with the log-likelihood objective for which no such guarantee exists and

gradient descent may diverge if the learning rate is not chosen appropriately.

Although the problem formulation contains no explicit regularization term, regularization is

achieved implicitly by controlling the complexity of the model class M. In the experiments section,

the model hypothesis class is defined by a small integer hyperparameter called bond-dimension.

We solve the problem for several choices of bond-dimension using a held-out test set to measure

overfitting and generalization. In the case where X consists of strings, the associated Hilbert space H

has a dimension that is exponential in the string length. The model hypothesis class M should

be chosen so that the induced Born distribution Pψ̂ offers a useful inductive bias for modeling

high-dimensional probability distributions over the space of sequences. We note, as an aside, that the

plug-in estimator ‖ψ − ψπ̂‖ is a biased estimator of the population objective ‖ψ − ψπ‖.

3. Outline of Our Approach to Solving the Problem

We present an algorithm that, given a fixed realization of data (x1, . . . , xn) ∈ X n and an initial

state ψ0 ∈ M, produces a deterministic sequence {ψt}t≥0 of unit vectors in M. The algorithm is a

variation of the density matrix renormalization group (DMRG) procedure which we call exact single-site

DMRG in which each step produces a vector closer to ψπ̂ . The sequence is defined inductively as

follows: given ψt, the inductive step defines a subspace Ht+1 of H, which also contains ψt. Then ψt+1

is defined to be the vector in Ht+1 closest to ψπ̂ . Inspired by ideas from the Renormalization Group
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we provide an analytic formula for ψt+1. The fact that the distance to the target vector ψπ̂ decreases

after each iteration follows as a simple consequence of the following facts

ψt ∈ Ht+1 and ψt+1 = arg min
{ψ∈Ht+1 : ‖ψ‖=1}

‖ψπ̂ − ψ‖. (6)

See Figure 1.
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Figure 1. A bird’s eye view of the training dynamics of exact single-site DMRG on the unit sphere.
Figure 1. A bird’s eye view of the training dynamics of exact single-site DMRG on the unit sphere.

(a) The initial vector ψ0 and the vector ψπ̂ lie in the unit sphere of H. (b) The vector ψ0 is used to define

the subspace H1. The unit vectors in H1 define a lower dimensional sphere in H (in blue). The vector

ψ1 is the vector in that sphere that is closest to ψπ̂ . (c) The vector ψ1 is used to define the subspace H2.

The unit sphere in H2 (in blue) contains ψ1 but does not contain ψ0. The vector ψ2 is the unit vector in

H2 closest to ψπ̂ . (d) The vector ψ2 is used to define the subspace H3. The vector ψ3 is the unit vector

in H3 closest to ψπ̂ . And so on.

4. Effective Versions of the Problem

Each proposal subspace Ht mentioned in the previous section will be defined as the image of an

“effective” space. We begin with a general description of an effective space.

Let α : Heff → H be an isometric embedding of a Hilbert space Heff into H. We refer to

Heff as the effective Hilbert space. The isometry α and its adjoint map α∗ are summarized by the

following diagram,
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Heff H

α

idHeff

α∗

P

The composition α∗α = id Heff
is the identity on Heff. The composition in the other order αα∗ is an

orthogonal projection onto α(Heff) which is a subspace of H isometrically isomorphic to Heff. Call this

orthogonal projection P

P := αα∗. (7)

The effective version of the problem formulated in Section 2 is to find the unit vector ψ ∈ α(Heff)

in the image of the effective Hilbert space that is closest to ψπ̂ . This effective problem is solved exactly

in two simple steps. The first step is orthogonal projection: P(ψπ̂) is the vector in α(Heff) closest to ψπ̂ .

The second step is to normalize P(ψπ̂), which may not be a unit vector, to obtain the unit vector in

α(Heff) closest to ψπ̂ .

Therefore, the analytic solution to the effective problem is P(ψπ̂)/‖P(ψπ̂)‖ where

P(ψπ̂) = αα∗ (ψπ̂) (8)

= αα∗

(

∑
x∈X

√
π̂(x) |x〉

)
(9)

= α

(

∑
x∈X

√
π̂(x) α∗(|x〉)

)
. (10)

In the exact single-site DMRG algorithm, the space α(Heff) is contained within our model

hypothesis class M. We also offer a multi-site DMRG algorithm in the Appendix A. In this multi-site

algorithm, the analytic solution to the effective problem in α(Heff) does not lie in M so the solution to

the effective problem needs to undergo an additional “model repair” step.

Before going on to the details of the algorithm, it might be helpful to look more closely at the

solution to the effective problem. For each training example xi, call the vector α∗(|xi〉) ∈ Heff an

effective data point. Then, the argument of α in (10) becomes the weighted sum of effective data

∑
x∈X

√
π̂(x) α∗(|x〉). (11)

The effective data are not necessarily mutually orthogonal and so the vector in (11) will not be a

unit vector. One may normalize to obtain a unit vector in Heff and then apply α to obtain the analytic

solution to the effective problem. Normalizing in Heff and then applying α is the same as applying α

and then normalizing in H since α is an isometry.

5. The Exact Single-Site DMRG Algorithm

Now specialize to the case that π is a probability distribution on a set X of sequences. Suppose

that X = AN consists of sequences of length N in fixed alphabet A = {e1, . . . , ed}. The Hilbert space

H, defined as the free Hilbert space on X , has a natural tensor product structure V⊗N where V is the

free Hilbert space on the alphabet A. We refer to V as the site space. So in this situation, the vectors

{|e1〉, . . . , |ed〉} are an orthonormal basis for the d-dimensional site space V and the vectors

|ei1 ei2 · · · eiN
〉 := |ei1〉 ⊗ |ei2〉 ⊗ · · · ⊗ |eiN

〉 (12)

are an orthonormal basis for the dN dimensional space H = V⊗N . We choose as model hypothesis

class the subset M ⊆ H consisting of normalized elements in H that have a low rank matrix product

state (MPS) factorization. Vectors in this model hypothesis class have efficient representations, even in
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cases where the Hilbert space H is of exponentially high dimension. For simplicity of presentation,

we consider matrix product states with a single fixed bond space W, although everything that follows

could be adapted to work with tensor networks without loops having arbitrary bond spaces.

The exact single-site DMRG algorithm begins with an initial vector ψ0 ∈ M and produces

ψ1, ψ2, . . . inductively by solving an effective problem in the subspace

Ht+1 := αt+1(Heff,t+1) (13)

which we now describe. Let us drop the subscript t + 1 from the isometry αt+1 and the effective Hilbert

space Heff,t+1 in the relevant effective problem—just be aware that the embedding

α : Heff → H (14)

will change from step to step. The map α is defined using an MPS factorization of ψt in mixed canonical

form relative to a fixed site which varies at each step according to a predetermined schedule. For the

purposes of illustration, the third site is the fixed site in the pictures below.

ψt =
(15)

The effective space is Heff = W ⊗ V ⊗ W and the isometric embedding α : W ⊗ V ⊗ W → V⊗N is

defined for any φ ∈ W ⊗ V ⊗ W by replacing the tensor at the fixed site of ψt with φ:

α (16)

To see that α is an isometry, use the gauge condition that the MPS factorization of ψt is in mixed

canonical form relative to the fixed site, as illustrated below:

〈α(φ), α(φ′)〉 = = = 〈φ, φ′〉. (17)

The adjoint map α∗ : V⊗N → W ⊗ V ⊗ W has a clean pictorial depiction as well.

α∗
(18)

To see that α∗ as pictured above is, in fact, the adjoint of α, note that for any η ∈ H and any

φ ∈ Heff, both 〈η, α(φ)〉 and 〈α∗(η), φ〉 result in the same tensor contraction:

〈η, α(φ)〉 = = 〈α∗(η), φ〉 (19)

In the picture above, begin with the blue tensors. Contracting with the yellow tensor gives α(φ)

and then contracting with the red tensor gives 〈η, α(φ)〉. On the other hand, first contracting with the

red tensor yields α∗(η) resulting in 〈α∗(η), φ〉 after contracting with the yellow tensor.
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Now, Equation (10) describes an analytic solution for the vector in Ht+1 := α(W ⊗ V ⊗W) closest

to ψπ̂ . Namely, α(φ/‖φ‖) where

φ = ∑
x∈X

√
π̂(x) α∗(|x〉). (20)

For each sample |xi〉 = |ei1 ei2 · · · eiN
〉, the effective data point α∗(|xi〉) ∈ V ⊗ W ⊗ V is given by

the contraction

α∗ (|xi〉) = =

ei1 ei2 ei3 ei4 ei5 ei6 ei7
(21)

Once the effective form α∗(|x〉) of each distinct training example |x〉 has been computed, weighted

by
√

π̂(x), summed, and normalized, one obtains an expression for the unit vector φ/‖φ‖ ∈ W ⊗ V ⊗

W, depicted as follows,

φ

‖φ‖
= (22)

Finally, apply the map α to get ψt+1:

ψt+1 =
(23)

To complete the description of the exact single-site DMRG algorithm, we need to choose a schedule

in which to update the tensors. We use the following schedule, organized into back-and-forth sweeps,

for the fixed site at each step

1, 2, 3, . . . , N − 1, N, N − 1, . . . , 3, 2,︸ ︷︷ ︸
Sweep 1

1, 2, . . . , N − 1, N, N − 1, . . . , 2,︸ ︷︷ ︸
Sweep 2

1, 2, . . . (24)

A schedule that proceeds by moving the fixed site one position at a time allows us to take

advantage of two efficiencies resulting in an algorithm that is linear in both the number of training

examples n and the number of sites N. One efficiency is that most of the calculations of the effective

data in Equation (21) used to compute ψt+1 can be reused when computing ψt+2. The second efficiency

is that when inserting the updated tensor in Equation (22), it can be done so that the resulting MPS

factorization of ψt+1 as pictured in Equation (23) will be in mixed canonical form relative to a site

adjacent to the updated tensor, which avoids a costly gauge fixing step.

6. Experiments

This section considers the problem of unsupervised learning of probability distributions on

bitstrings of fixed length (Code available online: https://github.com/TunnelTechnologies/dmrg-

exact). The first problem we consider is the parity language PN , which consists of bitstrings of length

N containing an even number of 1 bits. The goal of this task is to learn the probability distribution p

which assigns uniform mass to each bitstring in PN and zero elsewhere. More explicitly,

p(x) =
1

|PN |
IPN

(x) =





1
|PN |

, x ∈ PN

0, x 6∈ PN

(25)

where IPN
: {0, 1}N → {0, 1} denotes the indicator function of the subset PN ⊂ {0, 1}N . The above

unsupervised learning problem is harder than the parity classification problem considered in [12]

because the training signal does not exploit data labels. Of the total |PN | = 2N−1 such bitstrings,

we reserved random disjoint subsets of size 2% for training, cross-validation and testing purposes.

A NLL of N − 1 corresponds to the entropy of the uniform distribution on PN . If the model memorizes

https://github.com/TunnelTechnologies/dmrg-exact
https://github.com/TunnelTechnologies/dmrg-exact
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the training set, it will assign to it a negative-log-likelihood (NLL) of N − 1 + log2(0.02) corresponding

to the entropy of the uniform distribution on the training data. A NLL of N corresponds to the entropy

of the uniform distribution on all bitstrings of length N. The measure of generalization performance is

the gap ǫ between the NLL of the training and testing data. We performed exact single-site DMRG

over the real number field using the P20 dataset for different choices of bond dimension, which refers

to the dimensionality of the bond space W in the effective Hilbert space Heff = W ⊗ V ⊗ W. Training

was terminated according to an early stopping criterion as determined by distance between the MPS

state and the state of the cross-validation sample. Since the bond dimension controls the complexity of

the model class, and since matrix product states are universal approximators of functions on {0, 1}N ,

we expect overfitting to occur for sufficiently large bond dimension. Indeed, the NLL as a function of

bond dimension reported in Figure 2 displays the expected bias-variance tradeoff, with optimal model

complexity occurring at bond dimension 3 with corresponding generalization gap ǫ = 0.0237.

The second problem we consider is unsupervised learning of the divisible-by-7 language which

consists of the binary representation of integers which are divisible by 7. The dataset was constructed

using first 149797 such integers which lie in the range [1, 220]. We trained a length-20 MPS to learn

the uniform distribution on the divisible-by-7 language as we did for P20, except utilizing subsets of

size 10% for training, testing and cross-validation. Figure 3 illustrates that the model trained on exact

single site DMRG with a bond dimension of 8 learns the DIV7 dataset with nearly perfect accuracy,

producing a model with a generalization gap of ǫ = 0.032.

2 4 6 8 10 12 14 16
Bond Dimension

18.8

19.0

19.2

19.4

19.6

19.8

20.0

N
LL

Train
Test
Target
Uniform

Figure 2. A representative bias-variance tradeoff curve showing negative log-likelihood (base 2) as

a function of bond dimension for exact single-site DMRG on the P20 dataset. For bond dimension 3,

the generalization gap is approximately ǫ = 0.0237. For reference, the uniform distribution on bitstrings

has NLL of 20. Memorizing the training data would yield a NLL of approximately 13.356.
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2 4 6 8 10 12 14 16
Bond Dimension

17.5

18.0

18.5

19.0

19.5

20.0

N
LL

Train
Test
Target
Uniform

Figure 3. A representative bias-variance tradeoff curve showing negative log-likelihood (base 2) as a

function of bond dimension for exact single-site DMRG on the div7 dataset. For bond dimension 8,

the generalization gap is approximately ǫ = 0.032. For reference, the uniform distribution on bitstrings

has NLL of 20, the target distribution has a NLL of 17.192, and memorizing the training data would

yield a NLL of approximately 13.87.

7. Discussion

A number of recent works have explored the parity dataset using restricted Boltzmann machines

(RBMs) and found it to be difficult to learn, even in experiments that train using the entire

dataset [11,21]. Recall that an RBM is a universal approximator of distributions on {0, 1}N , given

sufficiently many hidden units. Ref. [21] proved that any probability distribution on {0, 1}N can be

approximated within ǫ in KL-divergence by an RBM with m ≥ 2(N−1)(1−ǫ)+0.1 hidden units. For P20

this bound works out to be about 4 × 105 hidden nodes. It would be interesting to know whether it

could be learned with significantly fewer.

It is not difficult to train a feedforward neural network to classify bitstrings by parity using labelled

data, but we do not know if there are unsupervised generative neural models that do well learning PN .

Additionally, quantum circuits can be trained to classify labelled data [15]. It is reasonable to expect that

recurrent models whose training involve conditional probabilities π(x1, . . . , xk|xk+1, . . . , xN) might be

frustrated by PN since the conditional distributions contain no information: any bitstring of length less

than N has the same number of completions in PN as not in PN .

The reader may be interested in [22,23] where quantum models are used to learn classical data.

Those works considered quantum Boltzman machines which were shown to learn the distribution

more effectively than their classical counterparts using the same dataset. The complexity of classically

simulating a QBM scales exponentially with the number of sites in contrast to the tensor network

algorithms presented here, which scale linearly in the number of sites (for fixed bond dimension).

The main goal of this paper is to demonstrate the existence of classical datasets for which tensor

network models trained via DMRG learn more effectively than generative neural models. It will be

interesting to understand better how and why [24].
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8. Conclusions and Outlook

The essence of DMRG in the Quantum Physics literature is to solve an eigenvalue problem

in a high-dimensional Hilbert space H by iteratively solving an effetive eigenvalue problem in an

isometrically embedded Hilbert subspace Heff ⊆ H. In this paper we have shown how similar

reasoning allows to solve a high-dimensional distribution estimation problem by iteratively solving a

related linear algebra problem in effective Hilbert space. The proposed algorithm offers a number of

advantages over existing gradient-based techniques including a guaranteed improvement theorem,

and empirically performs well on tasks for which gradient-based methods are known to fail.
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Appendix A. Multi-Site DMRG

For completeness we now describe a related multi-site DMRG algorithm. The model class M now

consists of normalized vectors with matrix product factorizations, with possibly different bond spaces

having dimension less than a fixed upper bound. The algorithm begins with an initial vector ψ0 ∈ M

and produces ψ1, ψ2, . . . inductively. The inductive step is similar in that we solve an effective problem

in the image of an effective Hilbert space

Ht+1 := αt+1(Heff,t+1) (A1)

to find the unit vector in Ht+1 that is closest to the target state ψπ̂ , which we now denote with a tilde:

ψ̃t+1 := arg min
{ψ∈Ht+1 : ‖ψ‖=1}

‖ψπ̂ − ψ‖. (A2)

In multi-site DMRG, as opposed to single-site DMRG, the image of the effective space Ht+1 is not

contained in the MPS model hypothesis class M. So, the solution ψ̃t+1 to the effective problem must

undergo a “model repair” step

ψ̃t+1  ψt+1 (A3)

to produce a vector ψt+1 ∈ M. In summary:

• Use ψt to define an isometric embedding αt+1 : Heff → H with ψt ∈ Ht+1 := αt+1(Heff).
• Let ψ̃t+1 be the unit vector in Ht+1 closest to ψπ̂ .
• Perform a model repair of ψ̃t+1 to obtain a vector ψt+1 ∈ M. There are multiple ways to do the

model repair.

In order to define the effective problem in the inductive step of multi-site DMRG, one uses an

MPS factorization of ψt in mixed canonical gauge relative to an interval of r-sites. In the picture below,

the interval consists of the two sites 3 and 4.

ψt =
(A4)



Entropy 2019, 21, 1236 11 of 13

The effective Hilbert space Heff = WL ⊗ V⊗r ⊗ WR where WL and WR are the bond spaces to

the left and right of the fixed interval of sites, and r is the length of the chosen interval. The map

α : WL ⊗ V⊗r ⊗ WR → V⊗n is given by replacing the interval of sites and contracting

α (A5)

The map α and its adjoint α∗ are described by, and have properties proved by, pictures completely

analogous to those detailed for single-site DMRG in Section 5. The effective problem is also solved

the same way. What is not the same is that the vector in Ht+1 = α(WL ⊗ V⊗r ⊗ WR) which solves the

effective problem is outside of the model class M and so one performs a model repair step ψ̃t+1  ψt+1,

pictured graphically in Heff by:

 

(A6)

One way to perform the model repair is to choose

ψt+1 := arg min
ψ∈M∩Ht+1

‖ψ − ψ̃t+1‖ (A7)

but the flexibility of the model repair step allows for other possibilities. One can use the model repair

to implement a dynamic tradeoff between proximity to ψ̃t+1 and other constraints of interest, such as

bond dimension. Many of these implementations have good algorithms arising from singular value

decompositions manageable in the effective Hilbert space. Let use denote such a model repair choice

as ψSVD
t+1 . Be aware that if ψSVD

t+1 is the vector in M∩Ht+1 nearest to ψ̃t+1 as in Equation (A7), there is

no guarantee that ψSVD
t+1 will be nearer to ψπ̂ than the previous iterate. In fact, we have experimentally

observed the sequence obtained by this kind of model repair to move away from ψπ̂ . See Figure A1 for

an illustration of this possibility.

ψt

ψπ̂

ψ̃t+1

ψSVD
t+1

ψbetter
t+1

Figure A1. The shaded region represents the model class M. The red points all lie in Ht+1. The vector

ψ̃t+1 is defined to be the unit vector in Ht+1 closest to the target ψπ̂ . Note that ψ̃t+1 does not lie in M.

The vector ψSVD
t+1 is defined to be the vector in M∩Ht+1 closest to to ψ̃t+1. In this picture, ‖ψSVD

t+1 −

ψπ̂‖ > ‖ψt − ψπ̂‖. There may be a point, such as the one labelled ψbetter
t+1 , which lies in M∩Ht+1 and

is closer to ψπ̂ than ψSVD
t+1 , notwithstanding the fact that is is further from ψ̃t+1. This figure, to scale,

depicts a scenario in which ‖ψt − ψπ̂‖ = 0.09, ‖ψSVD
t+1 − ψπ̂‖ = 0.10, ‖ψbetter

t+1 − ψπ̂‖ = 0.07, ‖ψ̃t+1 − ψπ̂‖

= 0.06, ‖ψSVD
t+1 − ψ̃t+1‖ = 0.07, and ‖ψbetter

t+1 − ψ̃t+1‖ = 0.08.
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One might hope to improve the model repair step, say by pre-conditioning the singular value

decomposition in a way that is knowledgeable about the target ψπ̂ . For the experiments reported in

this paper, single-site DMRG consistently outperformed multi-site DMRG for several choices of model

repair step, and we include multi-site DMRG only for pedagogical reasons. The adaptability of the

bond dimension afforded by the multi-site DMRG algorithm could provide benefits that outweigh the

challenges of good model repair in some situations.
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