Definition 1 (Basis). Let X be a set. A collection \mathcal{B} of subsets of X is a basis for a topology on X iff: - (i) For each $x \in X$ there exists $B \in \mathcal{B}$ with $x \in B$. - (ii) If $x \in A \cap B$ with $A, B \in \mathcal{B}$, then there is $C \in \mathcal{B}$ such that $x \in C \subseteq A \cap B$. The sets $B \in \mathcal{B}$ are called basic open sets. For $x \in X$, the sets $B \in \mathcal{B}$ with $x \in B$ are the basic open neighborhoods of x. Assume \mathcal{B} satisfies (i) and (ii). A set $U \subseteq X$ is "open in the topology generated by \mathcal{B} " iff for every $x \in U$ there exists $B \in \mathcal{B}$ with $x \in B \subseteq U$. The sets that are open in the topology generated by \mathcal{B} do in fact comprise a topology which I will denote by $\tau_{\mathcal{B}}$ and which may be called "the topology generated by the basis \mathcal{B} ." **Proposition 1.** The collection $\mathcal{T}_{\mathcal{B}}$ is a topology on X, it contains \mathcal{B} , and it is the coarsest topology on X that contains \mathcal{B} . *Proof.* First, the topology axioms: $\emptyset \in \mathcal{T}_{\mathcal{B}}$ since it vacuously satisfies the condition to be open. For X, condition (i) gives for each $x \in X$ some $B \in \mathcal{B}$ with $x \in B \subseteq X$, hence $X \in \mathcal{T}_{\mathcal{B}}$. Let $\{U_i\}_{i\in I}\subseteq \mathcal{T}_{\mathcal{B}}$ and put $U=\bigcup_i U_i$. If $x\in U$, then $x\in U_j$ for some j, so there exists $B\in \mathcal{B}$ with $x\in B\subseteq U_j\subseteq U$. Hence $U\in \mathcal{T}_{\mathcal{B}}$. For finite intersections, let $U, V \in \mathcal{T}_{\mathcal{B}}$ and $x \in U \cap V$. Choose $A, B \in \mathcal{B}$ with $x \in A \subseteq U$ and $x \in B \subseteq V$. By (ii) there exists $C \in \mathcal{B}$ with $x \in C \subseteq A \cap B \subseteq U \cap V$, so $U \cap V \in \mathcal{T}_{\mathcal{B}}$. To see that the sets in \mathcal{B} are open in the topology generated by \mathcal{B} , observe that if $x \in B \in \mathcal{B}$, then $x \in B \subseteq B$, so $B \in \mathcal{T}_{\mathcal{B}}$. To see that $\tau_{\mathcal{B}}$ is the coursest topology containing \mathcal{B} , let \mathcal{T} be any topology on X with $\mathcal{B} \subseteq \mathcal{T}$. For $U \in \mathcal{T}_{\mathcal{B}}$ and each $x \in U$ choose $B_x \in \mathcal{B}$ with $x \in B_x \subseteq U$. Then $$U = \bigcup_{x \in U} B_x,$$ a union of sets in $\mathcal{B} \subseteq \mathcal{T}$, hence $U \in \mathcal{T}$. **Remark 1.** Also, $\mathcal{T}_{\mathcal{B}} = \bigcap \{ \mathcal{T} \mid \mathcal{T} \text{ is a topology on } X \text{ with } \mathcal{B} \subseteq \mathcal{T} \}.$ *Proof.* From above, $\mathcal{T}_{\mathcal{B}}$ is contained in every topology that contains \mathcal{B} so it's contained in the intersection. Also, $\mathcal{T}_{\mathcal{B}}$ is a topology that contains \mathcal{B} so the intersection is contained in $\mathcal{T}_{\mathcal{B}}$. **Remark 2.** The topology $\tau_{\mathcal{B}}$ consists of unions of basic open sets. *Proof.* The fact that basic open sets are open and $\tau_{\mathcal{B}}$ is a topology implies that the union of basic open sets are in $\tau_{\mathcal{B}}$. On the other hand, any set U that is open in the topology generated by \mathcal{B} then U is the union of the basic open sets it contains.